Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optical properties of InN films grown by pressurized-reactor metalorganic vapor phase epitaxy

Identifieur interne : 000160 ( Chine/Analysis ); précédent : 000159; suivant : 000161

Optical properties of InN films grown by pressurized-reactor metalorganic vapor phase epitaxy

Auteurs : RBID : Pascal:13-0216429

Descripteurs français

English descriptors

Abstract

InN thin films have been grown using a pressurized-reactor metalorganic vapor phase epitaxy system at 500- 700 °C under the pressure of 2.1 x 105 Pa. Photoluminescence (PL), optical reflectance and transmission measurements were performed at room temperature. We found that optical properties of these as-grown films strongly depend on the growth temperature. By analyzing the reflectance spectra, it is found that the calculated carrier concentrations of the films increased with decreasing growth temperature. Room-temperature photoluminescence spectra show that the films grown at temperatures higher than 575 °C have strong emission peaks at 0.68- 0.75 eV, while those grown at temperatures lower than and equal to 575 °C have negligible emission. The quenching of the emission is attributed to the existences of cubic InN and a high-density of nonradiative recombination centers in the films grown at low growth temperature region. Especially for the case of high temperature growth, the growth temperature dependence of the absorption-edge energy shows a similar tendency with that of the PL peak energy, both blue-shifted with decreasing the growth temperature possibly due to the well-known Burstein-Moss effects. From these results, an optimum growth temperature of 675 °C in the pressurized growth could be obtained.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0216429

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Optical properties of InN films grown by pressurized-reactor metalorganic vapor phase epitaxy</title>
<author>
<name>YUANTAO ZHANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University</s1>
<s2>Changchun 130012</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Changchun</settlement>
<region type="province">Jilin</region>
<region type="groupement">Dongbei</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kimura, Takeshi" uniqKey="Kimura T">Takeshi Kimura</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Prasertusk, Kiattiwut" uniqKey="Prasertusk K">Kiattiwut Prasertusk</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Iwabuchi, Takuya" uniqKey="Iwabuchi T">Takuya Iwabuchi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Suresh" uniqKey="Kumar S">Suresh Kumar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YUHUAI LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Katayama, Ryuji" uniqKey="Katayama R">Ryuji Katayama</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Matsuoka, Takashi" uniqKey="Matsuoka T">Takashi Matsuoka</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Japon</country>
<wicri:noRegion>Sendai 980-8577</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0216429</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0216429 INIST</idno>
<idno type="RBID">Pascal:13-0216429</idno>
<idno type="wicri:Area/Main/Corpus">000B83</idno>
<idno type="wicri:Area/Main/Repository">000787</idno>
<idno type="wicri:Area/Chine/Extraction">000160</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption edge</term>
<term>Absorption spectra</term>
<term>Burstein Moss effect</term>
<term>Carrier density</term>
<term>Cubic lattices</term>
<term>Growth mechanism</term>
<term>High density</term>
<term>III-V compound</term>
<term>Indium nitride</term>
<term>MOVPE method</term>
<term>Non radiative recombination</term>
<term>Optical properties</term>
<term>Optical transmission</term>
<term>Photoluminescence</term>
<term>Quenching</term>
<term>Reflection spectrum</term>
<term>Reflectivity</term>
<term>Spectral line shift</term>
<term>Temperature dependence</term>
<term>Thin films</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété optique</term>
<term>Composé III-V</term>
<term>Couche mince</term>
<term>Epitaxie phase vapeur</term>
<term>Méthode MOVPE</term>
<term>Photoluminescence</term>
<term>Transmission optique</term>
<term>Spectre absorption</term>
<term>Facteur réflexion</term>
<term>Spectre réflexion</term>
<term>Dépendance température</term>
<term>Mécanisme croissance</term>
<term>Densité porteur charge</term>
<term>Trempe</term>
<term>Nitrure d'indium</term>
<term>Réseau cubique</term>
<term>Densité élevée</term>
<term>Recombinaison non radiative</term>
<term>Limite absorption</term>
<term>Déplacement raie</term>
<term>Effet de Burstein Moss</term>
<term>InN</term>
<term>CaSe</term>
<term>7866</term>
<term>8115K</term>
<term>8115G</term>
<term>7855</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">InN thin films have been grown using a pressurized-reactor metalorganic vapor phase epitaxy system at 500- 700 °C under the pressure of 2.1 x 10
<sup>5</sup>
Pa. Photoluminescence (PL), optical reflectance and transmission measurements were performed at room temperature. We found that optical properties of these as-grown films strongly depend on the growth temperature. By analyzing the reflectance spectra, it is found that the calculated carrier concentrations of the films increased with decreasing growth temperature. Room-temperature photoluminescence spectra show that the films grown at temperatures higher than 575 °C have strong emission peaks at 0.68- 0.75 eV, while those grown at temperatures lower than and equal to 575 °C have negligible emission. The quenching of the emission is attributed to the existences of cubic InN and a high-density of nonradiative recombination centers in the films grown at low growth temperature region. Especially for the case of high temperature growth, the growth temperature dependence of the absorption-edge energy shows a similar tendency with that of the PL peak energy, both blue-shifted with decreasing the growth temperature possibly due to the well-known Burstein-Moss effects. From these results, an optimum growth temperature of 675 °C in the pressurized growth could be obtained.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>536</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Optical properties of InN films grown by pressurized-reactor metalorganic vapor phase epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YUANTAO ZHANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KIMURA (Takeshi)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PRASERTUSK (Kiattiwut)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>IWABUCHI (Takuya)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KUMAR (Suresh)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YUHUAI LIU</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KATAYAMA (Ryuji)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>MATSUOKA (Takashi)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Materials Research, Tohoku University</s1>
<s2>Sendai 980-8577</s2>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University</s1>
<s2>Changchun 130012</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>152-155</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000503815090220</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>16 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0216429</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>InN thin films have been grown using a pressurized-reactor metalorganic vapor phase epitaxy system at 500- 700 °C under the pressure of 2.1 x 10
<sup>5</sup>
Pa. Photoluminescence (PL), optical reflectance and transmission measurements were performed at room temperature. We found that optical properties of these as-grown films strongly depend on the growth temperature. By analyzing the reflectance spectra, it is found that the calculated carrier concentrations of the films increased with decreasing growth temperature. Room-temperature photoluminescence spectra show that the films grown at temperatures higher than 575 °C have strong emission peaks at 0.68- 0.75 eV, while those grown at temperatures lower than and equal to 575 °C have negligible emission. The quenching of the emission is attributed to the existences of cubic InN and a high-density of nonradiative recombination centers in the films grown at low growth temperature region. Especially for the case of high temperature growth, the growth temperature dependence of the absorption-edge energy shows a similar tendency with that of the PL peak energy, both blue-shifted with decreasing the growth temperature possibly due to the well-known Burstein-Moss effects. From these results, an optimum growth temperature of 675 °C in the pressurized growth could be obtained.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70H66</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>VPE</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>MOVPE method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método MOVPE</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Transmission optique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Optical transmission</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Transmisión óptica</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Spectre réflexion</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Reflection spectrum</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Espectro reflexión</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Densité porteur charge</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Carrier density</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Trempe</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quenching</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Densité élevée</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>High density</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Densidad elevada</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Recombinaison non radiative</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Non radiative recombination</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Recombinación no radiativa</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Limite absorption</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Absorption edge</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Déplacement raie</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Spectral line shift</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Effet de Burstein Moss</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Burstein Moss effect</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Efecto Burstein Moss</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InN</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>CaSe</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>7866</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8115G</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>196</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000160 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000160 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0216429
   |texte=   Optical properties of InN films grown by pressurized-reactor metalorganic vapor phase epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024